金屬鹵鈣鈦礦太陽能電池因其優異的性能在光伏領域引起了廣泛的關注。目前已經實現了高達26.1%的認證效率,該效率能夠與單晶硅電池的效率媲美。然而,差的長期工作穩定性對鈣鈦礦光伏技術的商業化提出了嚴峻的挑戰。器件中每一個功能層及其界面與電池的長期穩定性密切相關。其中,正式p-i-n電池的埋底界面對制備高效穩定鈣鈦礦太陽能電池至關重要。
鑒于此,陳江照教授和易健宏教授團隊開發了一種多齒配體增強的螯合策略,通過管理界面缺陷和應力來提高埋底界面的穩定性。采用雙(2,2,2-三氟乙基)(甲氧羰基甲基)膦酸酯(BTP)修飾埋底界面。BTP中的C=O、P=O和兩個-CF3官能團協同鈍化SnO2表面和鈣鈦礦薄膜底表面的缺陷。而且,BTP修飾有助于減輕界面殘余拉應力,促進鈣鈦礦結晶,降低界面能壘。該多齒配體調控策略適用于不同的鈣鈦礦組分,具有很好的普適性。由于顯著的減少了非輻射復合和顯著提高的界面接觸,BTP修飾的器件實現了24.63%的功率轉換效率(PCE),這是空氣環境制備的器件報道的最高效率之一。未封裝的BTP修飾的器件在10-20%RH環境中老化3000小時以上保持初始效率的98.6%。未封裝的BTP修飾的器件加熱老化1728小時后保持初始效率的84.2%。本工作為通過設計多齒螯合配體分子增強埋底界面穩定性提供見解與指導。
陳江照教授長期從事新能源材料與器件研究,共發表SCI論文104篇,總引用8300余次,H指數為34。其中,以第一或通訊作者發表SCI論文82篇,包括1篇Nat. Energy、7篇Adv. Mater.、1篇Energy Environ. Sci.、2篇Angew. Chem. Int. Ed.、4篇Adv. Energy Mater.、4篇Adv. Funct. Mater.、3篇ACS Energy Lett.、1篇Nano-Micro Lett.、2篇Nano Lett.、2篇Nano Energy等,ESI高被引論文19篇,ESI熱點論文4篇,單篇論文最高引用490余次,單篇引用超過100次的論文有16篇,1篇論文入選ACS Energy Letters亮點文章。申請發明專利12項,其中獲授權7項。作為主編出版中文專著4部。主持國家自然科學基金面上、兵團重點領域科技攻關計劃項目、重慶市自然科學基金面上、重慶市留學人員回國創業創新支持計劃重點項目等科研項目8項。獲得2023年全球前2%頂尖科學家、新疆天池英才特聘教授、昆明理工大學拔尖人才(三層次)、重慶大學百人、第二屆沙坪壩區十佳科技青年、2023川渝科技學術大會優秀論文特等獎、重慶市科協崗位創新爭先行動三等獎、第三屆川渝科技學術大會優秀論文二等獎、2022年Wiley威立中國開放科學高貢獻作者獎、2022年Wiley威立中國開放科學年度作者獎等獎勵與榮譽10余項。在國內外重要學術會議作邀請報告近20次。擔任國際/國內學術會議大會主席(1次)、大會秘書長(1次)和分會場主席(4次)。擔任Nature、Nat. Rev. Phys.、Joule等40余本國際知名學術期刊的審稿人。擔任Nano-Micro Lett.、Carbon Energy、SmartMat、Nano Mater. Sci.、Sci. China-Mater.、eScience和Carbon Neutrality期刊的青年編委及先進儲能材料與技術兵團重點實驗室學術委員會委員。
Figure 1.(a) Sn 3d, (b) O 1s, (c) F 1s and (d) P 2p XPS spectra of the SnO2and SnO2/BTP films. (e)19F NMR, and (f-h)13C NMR spectra of the SnO2solutions without and with BTP. (i) TheBinding energies (Eb) between the OVdefects in SnO2in contact with theBTPmolecule. Optimized structure of SnO2surface containing OVdefects.
Figure 2.(a) Optimized structures of FAPbI3surface containing iodine vacancy defects with BTP. (b) Pb 4f, (c) I 3d, (d) P 2p, (e) O 1s and (f) F 1s XPS spectra of the pure BTP, PbI2and PbI2+BTP films. (g) FTIR spectra of the perovskite, BTP+perovskite, and pure BTP films in the range of 1000-1900 cm-1. (h) The relaxed structure of BTP molecules bridging SnO2substrate and perovskite through chemical bonds.
Figure 3.AFM imagesof the SnO2films (a) without and (b) with BTP. (c) XRDpatterns and (d) XRD intensity and FWHM for the control and BTP-modified perovskite films. GIXRD spectra with different ω values (0.5~1.5) of the (e) control, and (f) BTP-modified perovskite films.
Figure 4.Top-view SEM images of the (a) control and (b) BTP-modified perovskite films. The scale bar is 1 μm.AFM images of the perovskite films (c) without and (d) with BTP modification. PL mapping images of the (e) glass/perovskite and (f) glass/BTP/perovskite films. (g) SSPL and (h) TRPL spectra of the glass/without and with BTP/perovskite films measured from the glass side. PVSK stands for the perovskite layer. SCLC for the electron-only devices with the structure of the (i) ITO/SnO2/perovskite/PCBM/BCP/Ag and (j) ITO/SnO2/BTP/perovskite/PCBM/BCP/Ag. (k) SSPL and (l) TRPL spectra of the perovskite films deposited on the SnO2substrates without and with BTP modification.
Figure 5.(a) TPV and (b) TPC decay curves of the PSCs without and with BTP. (c) The light-intensity dependence ofVOCcurves for the control and BTP-modified devices. (d) Energy level diagram of calculated SnO2and SnO2/BTP in comparison with the energy levels of ITO, perovskite films, Spiro-OMeTAD (HTL) and Au. (e) Schematic of the buried interface modified by polydentate ligand BTP.
Figure 6.(a)J-Vcurves of the champion control and BTP modified devices. (b)J-Vcurves of the devices without and with TFE. (c)J-Vcurves of the devices without and with MAC. (d)J-Vcurves of the devices without and with PA. (e)J-Vcurves of best-performing devices without and with BTP using FA0.85MA0.15PbI3composition.(f) The stabilized photocurrent density of best-performing devices without and with BTP using Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06composition. (g) The stability of the PSCs without and with BTP heated at 65 ℃ in the dark in an N2-filled glovebox. (h) The stability for the control and BTP-modified devices under a relative humidity (RH) of 10-20% in the dark. (i) The PCE evolution for the control and BTP-modified devices under one sun illumination of 100 mW/cm2provided by white light LED at room temperature in the N2-filled glovebox.
文章鏈接:
Baibai Liu#, Qian Zhou#, Yong Li#, Yu Chen, Dongmei He*, Danqing Ma, Xiao Han, Ru Li*, Ke Yang, Yingguo Yang, Shirong Lu, Xiaodong Ren*, Zhengfu Zhang, Liming Ding, Jing Feng, Jianhong Yi*, Jiangzhao Chen*. Polydentate ligand reinforced chelating to stabilize buried interface toward high-performance perovskite solar cells.Angewandte Chemie International Edition2024,e202317185.
https://onlinelibrary.wiley.com/doi/10.1002/anie.202317185
聲明:化學加刊發或者轉載此文只是出于傳遞、分享更多信息之目的,并不意味認同其觀點或證實其描述。若有來源標注錯誤或侵犯了您的合法權益,請作者持權屬證明與本網聯系,我們將及時更正、刪除,謝謝。 電話:18676881059,郵箱:gongjian@huaxuejia.cn